COURSE GUIDE-short form

Academic year 2017-2018

Course name ¹	Automation applied în industrial processes			Course code		2ISI07DID			
Course type ²	DID	Category ³	DI	Year of study	2	Semester	4	Number of credit points	4

Faculty	Materials Science and Engineering	Number of teaching and learning hours ⁴					
Field	Industrial Engineering	Total	L	T	LB	P	IS
Specialization	SafetyEngineering in Industry	72	28	-	28	-	16

Pre-requisites from the	Compulsory	Not the case	-
curriculum ⁵	Recommended	Not the case	

General objective ⁶	Development of knowledge, technical preparation and thinking in the field of mechanical processing, knowing the basics of machining technologies.
Specific objectives ⁷	Knowing the major types of surface machining technologies in industrial practice, of the way of achieving as well as their understanding from the point of view of potential risk.
Course description ⁸	Theoretical bases of surface generation by machining; kinematics of machining process; elements of machining theory; technologies of processing by: lathing, drilling, planning and grinding.

	Assessment		Schedule ⁹	Percentage of the final grade(minimum grade) ¹⁰
	Class tests along the semester			
Continuous assessment	Activity during tutorials/laborator works/projects/practical work – or	continuous	50%	
	Assignments		-	-%
	Final assessment form ¹¹	Exam	session	
Final assessment	Oral Examination: 1. Closed question, oral response - 5 2. Closed question, oral response - 5			50%

Course organizer	Assoc.Prof.Ph.D.Eng. Gheorghe Bădărău	
Teaching assistants	Assoc.Prof.Ph.D.Eng. Gheorghe Bădărău	

¹Course name from the curriculum

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁵According to 4.1 –Pre-requisites - from the Course guide – extended form

⁶According to 7.1 from the Course guide – extended form

⁷According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

 $^{^9}$ For continuous assessment: weeks 1-14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

 $^{^{10}\}mathrm{A}$ minimum grade might be imposed for some assessment stages

¹¹ Exam or colloquium