COURSE GUIDE – short form

Academic year 2017-2018

Course name ¹	e ¹ Ferrous alloys smelting				Course code 3IPM03DS				
Course type ²	DID	Category ³	DI	Year of study	Ξ	Semester	5	Number of credit points	6

Faculty	Materials Science and Engineering	Number of teaching and learning hours ⁴						
Field	Materials Science		L	Т	LB	Р	IS	
Specialization	Specialization Materials Processing Engineering		42	-	14	14	74	

Pre-requisites from the	Compulsory	-
curriculum ⁵	Recommended	-

General objective ⁶	Processing of metallic and nonmetallic loads inside and outside the smelting equipment, in order to obtain a ferrous melt which could be used to obtain castings, according to the quality issues and economic efficiency.
Specific objectives ⁷	 the analysis of the technological processing flow of metallic and nonmetallic charges heats, inside and/or outside a smelting equipment, as appropriate, to obtain molten metallic iron or steel, heat preparation, smelting equipment preparation, loading, smelting, metal bath overheating, metallurgical treatment of metal bath (inside/ outside the smelting equipment), smelting discharge.
Course description ⁸	 Introduction. The history of metallic and nonmetallic loads processing, in order to obtain cast iron and steel. Logical scheme of a ferrous alloy smelting flow. Cast irons. Definition. Classification criteria. Grades. Cast iron smelting. Steels. Definition. Classification criteria. Grades. Steel smelting.

	Assessment	Schedule ⁹	Percentage of the final grade (minimum grade) ¹⁰	
Continuous	Activity during laboratory works	Weeks 1-14	30 %	
assessment	Activity during projects	Weeks 1-14	25 %	
	Final assessment form ¹¹	Exam	Exam.period	
Final assessment	Final assessment – written ex choice test. Multiple choice test subjects, composed of simple k completion.	45 %		

Course organizer	Prof. PhD. Eng.Stanciu Sergiu	
Teaching	Asoc.Prof. PhD. Eng. Nicanor Cimpoeşu	
assistants	Lecturer PhD Eng. Mihai Axinte	

¹Course name from the curriculum

 $^{^{2}}$ DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

 ⁷ According to 7.2 from the Course guide – extended form
 ⁸ Short description of the course, according to point 8 from the Course guide – extended form
 ⁹ For continuous assessment: weeks 1 – 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages ¹¹ Exam or colloquium