COURSE GUIDE – short form

Academic year 2017-2018

Course name ¹	me ¹ Heating processes bases				Cours	e 3SM0	3SM03		
Course type ²	DID	Category ³	DI	Year of study	Ш	Semester	Ι	Number of credit points	5

Faculty	Of Materials Science and Engineering	Number of teaching and learning hours ⁴					
Field	eld Materials Engineering		L	Т	LB	Р	IS
Specialization	Materials Processing Engineering		28	-	28	-	-

Pre-requisites from the	Compulsory	Not applicable
curriculum ⁵	Recommended	Not applicable

General objective ⁶	Knowledge using of physical chemistry, alloys thermodynamics, chemistry and mathematics apparatus for creating of mathematics models, for thermodynamic parameters of chemical processes specific to materials science.					
Specific objectives ⁷	Analysis of chemical processes, thermodynamically, that occur at high temperatures – equilibrium, kinetics, pressure, initial conditions, variation of free entalphy, etc – in order to control processes that occur for alloys manufacture, thermal treatment, plastic deformation, powder metallurgy, welding, extractive metallurgy etc.					
Course description ⁸	 History of processes that occur at high temperatures Vaporization processes at unicomponent and bicomponent systems Formation and dissociation of oxides and carbonates Analysis of the process AB=A+B A and B are in pure state or as supersaturated solution A and B form solutions with reciprocal and unlimited solubility A and B form solutions with reciprocal and limited solubility A and B form solutions with reciprocal and limited solubility A and B are dissolved in a C solvent 2.2 Formation and dissociation of an oxide in different situations A ond Me are in pure state 2.2 MeO and Me are in pure state 3.2.4 Oxygen potential 3.2.5 Formation and dissociation of iron oxides Reduction of metallic oxides Thermodynamics A dust there in solution A section product for chemical compound A:3.4 Reduction of complex chemical compounds A:3.5 Direct and non-direct reductions Thermodynamics of reactions from C-S system. 					

Assessment		Schedule ⁹	Percentage of the final grade (minimum grade) ¹⁰	
Continuous assessment	Class tests along the semester	W5, 10 and 14	10% (at least 5 mark)	

	Activity during laboratory work		w1-w14	35% (at least 5 mark)
	Homework		w12	15% (at least 5 mark)
	Final assessment form ¹¹	Oral examination	Ses.	
Final assessment	Examination procedures and c Oral exam, exam tickets. A tic subjects. It is required that two marks of at least 5. Mark exam Examination takes place if the three tests have a proportion m	rked with at least 5. I each of the	40% (at least 5 mark)	

Course organizer	Vasile Cojocaru Filipiuc, dr. eng., prof.	
Teaching assistants	Nicanor CIMPOEȘU, dr., eng., lect.	

¹Course name from the curriculum

¹¹ Exam or colloquium

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, Pproject, IS-individual study)

⁵ According to 4.1 - Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form ⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

⁹ For continuous assessment: weeks 1 - 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages