COURSE GUIDE – short form

Academic year 2017-2018

Course name ¹	Metallurgical basics of material fracture					Cours	ode 3SM14	3SM14DS	
Course type ²	DS	Category ³	DO	Year of study	≡	Semester	6	Number of credit points	3

Faculty	Materials Scienece and Engineering	Number of teaching and learning hours ⁴					
Field	Materials Engineering (Mechanical Engineering; Industrial Engineering)	Total	L	Т	LB	Ρ	IS
Specialization	Materials Scienece	42	28	-	14	-	30

Pre-requisites from the curriculum ⁵	Compulsory	-
	Recommended	-

General objective ⁶	Optimal solution of technical problems related to processed materials by applying concepts, theories and experimental methods
Specific objectives ⁷	Assimilation of knowledge regarding the behavior of metallic materials in mechanical and metallurgical factors influence on their break.
Course description ⁸	Theoretical notions of breaking materials. Crystalline structures. Theoretical breaking strength. Griffith's theory. Breaking ideal brittle materials. Breaking real-fragile materials Orowan's theory, theory of Irwin. Germination and propagation of cracks. Factors influencing behavior and tensile deformation. Modeling fracture. Brittle fracture. Types of tears fragile. Characteristics of fragile fractures in metals, Ductile tearing. Tearing modes, Ductile-brittle transition. Factors that determine the ductility or fragility of metallic materials. Creep rupture, Fatigue rupture. Breaking specific for different types of steels.

	Assessment	Schedule ⁹	Percentage of the final grade (minimum grade) ¹⁰		
	Class tests along the semester	ſ		%	
Continuous assessment	Activity during tutorials/laborate works/projects/practical work	continuous	50%		
	Assignments			%	
Final assessment	Final assessment form ¹¹	colloquy	Wk 13		
	Examination procedures and conditions: 1. open and close questions; oral examination; 100%			50%	

Course organizer	Gheorghe BĂDĂRĂU, Assoc. Prof. Ph.D. Eng.	
Teaching assistants	Gheorghe BĂDĂRĂU, Assoc. Prof. Ph.D. Eng.	

¹Course name from the curriculum

² DF - fundamental, DID - in the field, DS - specialty, DC - complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, Pproject, IS-individual study) ⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

⁹ For continuous assessment: weeks 1 – 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period ¹⁰ A minimum grade might be imposed for some assessment stages ¹¹ Exam or colloquium