COURSE GUIDE - short form

Academic year 2017-2018

Course name ¹	Model	ing and Anal	lysis l	by Finite Eleme	nt	Course code		4EPI04DS	
Course type ²	DS	Category ³	DI	Year of study	4	Semester	7	Number of credit points	4

Faculty	Ity Materials Science and Engineering		Number of teaching and learning hours ⁴					
Field	Mechanical Engineering	Total	L	Т	LB	Р	IS	
Specialization	Specialization Equipments for industrial processes		28	-	14	-	54	

Pre-requisites from the	Compulsory	
curriculum ⁵	Recommended	

General objective ⁶	Initial training in using the finite element method as a method for designing equipments for industrial processes.
Specific objectives ⁷	 The description of the basic concepts of modeling and analysis with the finite element. The knowledge of principles and basic elements of modeling and analysis of mechanical and thermal processes using finite element method. The presentation of modeling and finite element analysis examples.
Course description ⁸	The finite element method in engineering. The problem formulation and the discretization of the field of analysis. Finite nodal elements. Obtaining the finite element numerical model.

	Assessment	Schedule ⁹	Percentage of the final grade (minimum grade) ¹⁰	
	Class tests along the semester		%	
Continuous assessment	Activity during tutorials/laborate works/projects/practical work	Weeks 1-14	30 %	
	Assignments		%	
	Final assessment form ¹¹	colloquium	Week 14	
Final assessment	Examination procedures and conditions: 1.Subject with open questions; tasks: answers to open questions;working conditions:oral;percent of the final grade 100 %			70 %

Course organizer	Prof. dr. eng. Romeu Chelariu	
Teaching assistants	Prof. dr. eng. Romeu Chelariu	

¹Course name from the curriculum

Formular TUIASI.POB.04-F2, rev.0

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

 $^{^{9}}$ For continuous assessment: weeks 1-14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages

¹¹ Exam or colloquium