COURSE GUIDE – short form

Academic year 2017-2018

Course name ¹	Metallurgical Processes Modeling and Optimization					Course	code	4SM07DID	
Course type ²	DID	Category ³	DI	Year of study	IV	Semester	VIII	Number of credit points	6

Faculty	Faculty of Materials Science and Engineering		Number of teaching and learning hours ⁴					
Field	Materials Engineering	Total	L	Т	LB	Р	IS	
Specialization	Materials Science	144	28	-	28	-	88	

Pre-requisites from the curriculum ⁵	Compulsory	
	Recommended	

General objective ⁶	Combining the knowledge, principles and methods of the technical sciences of the field with the principles and methods used in the analysis, modeling and optimization of metallurgical processes.			
Specific objectives ⁷	 Knowledge of statistical and mathematical methods for obtaining mathematical models describing functional relations between the input and output variables of metallurgical processes. Optimization of metallurgical processes by specific methods. 			
Course description ⁸	First-order factorial experimental programs. Second-order factorial experimental programs. Optimization without constraints of the metallurgical processes. Optimization with constraints of the metallurgical processes through linear programming.			

Assessment			Schedule ⁹	Percentage of the final grade (minimum grade) ¹⁰	
Continuous	Class tests along the semester		-		
Continuous assessment	Activity during laboratory	Week 1-14	40 % (minimum 5)		
assessment	Homework		-		
	Final assessment form ¹¹	Oral exam	Session		
Final assessment					

Course organizer	Prof. dr. eng. Romeu CHELARIU	
Teaching	Assoc. dr. eng. Nicanor CIMPOEŞU	
assistants	Assist. dr. eng. Oana RUSU	

¹Course name from the curriculum

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

⁹ For continuous assessment: weeks 1 – 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period ¹⁰ A minimum grade might be imposed for some assessment stages ¹¹ Exam or colloquium