COURSE GUIDE – short form

Academic year 2016-2017

Course name ¹	INTELIGENT MATERIALS				Cours	ode			
Course type ²	OD	Category ³		Year of study	lv	Semester	7	Number of credit points	3

Faculty	Materials Science and Engineering	Numb	Number of teaching and learning hours ⁴				
Field	Materials engineering	Total	L	Т	LB	Р	IS
Specialization Materials science		42	28		14		

Pre-requisites from the	Compulsory	not necessary
curriculum⁵	Recommended	Physical Metallurgy

General objective ⁶	Understanding the science of shape memory materials properties and the technology of obtaining them.
Specific objectives ⁷	 Learning theoretical knowledge related to physical and chemical phenomena, based on inteligent materials proprieties. Achieving the ability to research and analyze inteligent materials using a variety of research methods.
Course description ⁸	Phase transformations in shape memory alloys Characteristics and properties of shape memory alloys Obtaining shape memory alloys Applications of shape memory alloys

	Assessment	Schedule ⁹	Percentage of the final grade (minimum grade) ¹⁰
Class tests along the semester			%
Continuous assessment	Activity during tutorials/laboratory works/projects/practical work	Practical test – 1h	50%
	Assignments		%
	Final assessment form ¹¹		
Final assessment	Examination procedures and conditions: 1. ; tasks ; working conditions ; percent of the 2. ; tasks ; working conditions ; percent of the 3.	50%	

Course organizer	Prof.dr. eng. Sergiu STANCIU	
Teaching assistants	Prof. dr. eng. Sergiu STANCIU	

¹Course name from the curriculum

² DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

⁹ For continuous assessment: weeks 1 – 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period ¹⁰ A minimum grade might be imposed for some assessment stages ¹¹ Exam or colloquium