COURSE GUIDE - short form

Academic year 2017-2018

Course name ¹	Technical Drawing and infographics (1)					Cours	ode 1IPM05	1IPM05	
Course type ²	DF	Category ³	DI	Year of study	1	Semester	1	Number of credit points	4

Faculty	Material Science and Engineering	Number of teaching and learning hours ⁴			ning		
Field	eld Materials engineering		L	Τ	LB	Р	IS
Specialization	Materials processing engineering		28	-	14	-	28

Pre-requisites from the curriculum ⁵	Compulsory	-
	Recommended	-

General objective ⁶	Obtaining competence in graphical representations in the field of materials engineering.
Specific objectives ⁷	 Proper interpretation of graphical representations in the field of materials engineering. Achieving quality graphic representations specific to the field of materials engineering.
Course description ⁸	Projection methods. Systems of double and triple orthogonal projections. Layout of projections. Projection layout systems. Slanted views. Sections, Fractures and Large Scale Detail Representation. Dimensioning. Sketch and scale drawing. Representation scales. Representation, dimensioning and marking of threads. Representation and dimensioning of flanges. Assembly drawing. Geometric constructions. Drawing of semifabric. Representation and marking of joints by welding, gluing, sewing. Riveted joints. Marking of tolerances and adjustments. Marking of Surface Condition.

	Assessment	Schedule ⁹	Percentage of the final grade (minimum grade) ¹⁰		
Continuous	Class tests along the semest	ter	Laboratory work sessions 4 and 5	50 %	
assessment	Activity during tutorials/labora works/projects/practical work			40 %	
	Assignments			%	
Final	Final assessment form ¹¹ colloquium		Laboratory work session 7	10 %	
assessment	Examination procedures and conditions: 1. Sketch of a medium complexity mechanical piece; percent of the final grade 10 %			10 /0	

Course organizer	Lecturer.Phd.eng. Ion Antonescu	
Teaching assistants	Lecturer.Phd.eng. Ion Antonescu	

¹Course name from the curriculum

Formular TUIASI.POB.04-F2, rev.0

 $^{^2}$ DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁵ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

 $^{^8}$ Short description of the course, according to point 8 from the Course guide – extended form

 $^{^{9}}$ For continuous assessment: weeks 1-14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages

¹¹ Exam or colloquium