COURSE GUIDE – short form

Academic year 2017-2018

Course name ¹	HEAT TREATMENTS				Course	e 3ISI13E	3ISI13DID		
Course type ²	DID	Category ³	DO	Year of study	3	Semester	6	Number of credit points	3

Faculty	Material Science and Engineering	Number of teaching and learning hours ⁴			ning		
Field	Industrial Engineering	Total	L	Т	LB	Ρ	IS
Specialization	Safety Engineering in Industry	84	28	-	28	-	28

Pre-requisites from the curriculum ⁵	Compulsory	Not the case
	Recommended	Not the case

General objective ⁶	Developing of knowledge, thinking and technical and practical training in the field of heat treatments, in order to understand their necessity in the technological processes and the applicable principles in order to complete the general training in the field of industrial engineering.
Specific objectives ⁷	Knowledge of the main types of thermal treatments encountered in industrial practice, technological parameters, their use and their understanding from the perspective of potential risk.
Course description ⁸	Purpose of heat treatments, equilibrium diagrams, thermal parameters and specific temporal for heat treatments and thermochemical technologies, primary thermal treatment technology, steel quenching technology, martensitic hardening technology; shallow hardening, annealing technology, thermochemical treatments.

	Assessment	Schedule ⁹	Percentage of the final grade (minimum grade) ¹⁰	
	Class tests along the semeste	r		%
Continuous assessment	Activity during tutorials/laborat works/projects/practical work	continuous	50 %	
	Assignments		-	%
Final assessment	Final assessment form ¹¹	colloquium	Wk 14	
	Examination procedures and conditions:1. Oral examination: two closed questions; equal weight			50 %

Course organizer	Lecturer Ph.D.Eng. Carmen Nejneru	
Teaching assistants	Lecturer Ph.D.Eng. Carmen Nejneru	

¹Course name from the curriculum

¹¹ Exam or colloquium

 $^{^{2}}$ DF – fundamental, DID – in the field, DS – specialty, DC – complementary (from the curriculum)

³ DI – imposed, DO –optional, DL – facultative (from the curriculum)

⁴ Points 3.8, 3.5, 3.6a,b,c, 3.7 from the Course guide – extended form (L-lecture, T-tutorial, LB-laboratory works, P-project, IS-individual study)

 $[\]frac{1}{5}$ According to 4.1 – Pre-requisites - from the Course guide – extended form

⁶ According to 7.1 from the Course guide – extended form

⁷ According to 7.2 from the Course guide – extended form

⁸ Short description of the course, according to point 8 from the Course guide – extended form

 $^{^9}$ For continuous assessment: weeks 1 - 14, for final assessment – colloquium: week 14, for final assessment-exam: exam period

¹⁰ A minimum grade might be imposed for some assessment stages